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Czech Republic 

Abstract: We apply a certain unifying physical description of the results of Information Theory. Assuming that heat 
entropy is a thermodynamic realization of information entropy, we construct a cyclical, thermodynamic, average-value 
model of an information transfer chain as a general heat engine, in particular a Carnot engine, reversible or irreversible. 
A working medium of the cycle (a thermodynamic system transforming input heat energy) can be considered as a 
thermodynamic, average-value model or, as such, as a realization of an information transfer channel. We show that for a 
model realized in this way the extended II. Principle of Thermodynamics is valid and we formulate its information form.  

In addition we solve the problem of a proof of II. Principle of Thermodynamics. We state the relation between the term of 
information entropy, introduced by C. Shannon (1948), and thermodynamic entropy, introduced by R. Clausius (1850) 
and, further, explain the Gibbs paradox. Our way to deal with the given topic is a connection of both the mathematical 
definitions of information entropies and their mutual relations within a system of stochastic quantities, especially with 
thermodynamic entropies defined on an isolated system in which a realization of our (repeatable) observation is 
performed [it is a (cyclic) transformation of heat energy of an observed, measured system].  

We use the information description to analyze the Gibbs paradox, reasoning it as a property of such observation, 
measuring an (equilibrium) thermodynamic system. We state a logical proof of the II. P.T. as a derivation of relations 
among the entropies of a system of stochastic variables, realized physically, and, the Equivalence Principle of the I., II. 
and III. Principle of Thermodynamics is formulated. 

Keywords: Carnot cycle, I., II., III. Principle of Thermodynamics, Heat entropy, Observation, Information entropy, 
Transfer channel, Transinformation, Noise.  

1. INTRODUCTION 

A working medium of any heat cycle can be 
considered as a thermodynamic, average-value model 
or, as such, as a realization of an information transfer 
channel. More generally we could use some kind of 
directly shared energy [6]. The cycle models an 
information transfer process in the channel, which 
enables input messages to be transferred repeatedly 
and uses transformations of such energies.  

Our thermodynamic-information derivation based on 
a heat cycle demonstrates the fact that it is impossible, 
in such a type of channel, for the bound [2] information 
contained in an input message to be transferred 
without its (average) loss, even when the ideal case of 
a noiseless channel is considered. This loss of 
information is the necessary condition for such a 
repeatable transfer of messages. Such information 
transfer can be worsened only by heat dissipation of 
energies, which means by a noise heat generated by 
the irreversible processes in the channel, subtractive in 
this case. This channel is described by a transformer of  
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input heat, which has non-ideal properties (inner 
friction).1  

To explain the Gibbs paradox and to prove the II. 
P.T. we use the concept of bound information [2, 20]. 
This method is identical with introducing the Boltzman 
function of statistical physics. Its negative value, 
determined by a detailness of our description of an 
observed system, is proved to be a value of Clausius 
entropy (in a certain substitute equivalent equilibrium 
thermodynamic way [24]). We show that a physical 
realization of such observation is equivalent to a 
scheme of a relevant (reversible) heat cycle [10]. Its 
properties are expressible in terms of the Gibbs 
paradox.  

The bound entropies of our realized observation, 
the input, the output and the conditional are, as the free 
ones [2, 20], associated by the channel equation [3, 
26]. This equation is, in this sense, an information 
description of a cyclical transformation of heat energy 
of an observed, measured system [10]. In this way, its 
derivation proves the II. P.T. and gives its information 
forms as well [10]. It is a most general formulation of 
the II. P.T. and yields in the Equivalence Principle of 
the I., II. and III. P.T. 

                                            

1This paper is a composite of the papers [10, 13] with small additions, and also, 
it is the very core of the book [14]. 
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2. NOTION OF ENTROPY 

2.1. Information Entropy 

With a stochastic phenomenon ! , the probability of 
which is p(!) , its "own" information, information 

amount I =
Def
! K " zlog p(#)  is associated. The quantity I  

is measured in information units bit  when K =1 , z = 2  
or nat  when K =1 , z = e  or Hartley  when K =1 , 
z =10  is used. Also it is possible to measure it in 
thermodynamic units: Boltzman  when K = k , k  is 
Boltzman constant2 and z =10 ; for K = k  and z = e  it 
is Clausius . Then it is valid that k !Hartley = Boltzman  
and k ! nat = Clausius .  

Let the stochastic phenomenon ! " X  be a 
realization of a discrete stochastic quantity X  with a 
probability distribution p(!)[ ]X , X  is its selecting space,  

X =
Def

X,  p(!)[ ] ,  " # X,  
"#X
$p(") = 1,  0 % p(") % 1.    (2.1) 

The expectation value H (X)  of the stochastic 
quantity {I}X , p(!)[ ] ,  

H (X) =
Def
E {I}X , p(!)[ ] ,        (2.2) 

is called Shannon, (information) entropy [3] of X . With 
the denotation  ! ! ! j  and  p(! j ) ! pj ,  we write  

H (X) = !K " pj zlog pj
j
# ,  p( j) = 1.

j
#       (2.3) 

For a continuous stochastic quantity X  the differential 
entropy is defined [20],  

H (X) =
Def
! K "

X# w($) zlog w($)d$;  
X# w($)d$ = 1, w($) % 0; (2.4) 

X ! "  is a non-degenerated interval, w(!)  is a density 
of probability of X , ! " X .  

2.1.1. Channels of Information Theory 

A discrete transfer channel K  is defined as the 
tripartite structure  

K =
Def

[(X, p(! | !), Y )],  where,       (2.5) 

                                            

2Gay-Lussac experiment, k = R
NA

, R  is gas constant, NA  is Avogadro 

number [15] 

X  is an input discrete stochastic quantity, a source 
of messages, with its selecting space X = {x1, x2 , ...}  

and a probability distribution p(!)[ ]x =
"

p(!)[ ]{i}#{1,2, ...} ;  

Y  is an output discrete stochastic quantity, a 
receiver of messages. Its selecting space is 
Y = {y1, y2 , ...}  and its probability distribution is 

p(!)[ ]Y =
"

p( j)[ ]{ j}#{1,2, ...} ;  

the quantity p(! | !)  is a probability distribution of an 
error in channel K , the distribution of probability of 
receiving (measuring, observing) yj ! Y  on the 
channel output when the input xi ! X  has been sent 
(output j  for input i ).  

Shannon entropy of X  or Y  respectively, is called 
the input or the output entropy, and, following the 
definition (2.3) with K =1  and z = e ,  

H (X) = !
i
"q(i) ln q(i),  H (Y ) = !

j
"p( j) ln p( j).     (2.6) 

The information amount Ii| j , contained in a 
phenomenon with the conditional probability p(i | j) , is 

defined by the equality Ii| j =
Def
! ln p(i | j) , and, is called 

the loss information. For its average information, its 
(conditional) entropy, we figure:  

H (X = xi |Y ) = !
j
"p(i | j) ln p(i | j),      (2.7) 

H (X |Y ) =
i
!q(i)

j
!p(i | j) ln p(i | j) = "

i
!

j
!p(i, j) ln p(i | j),  

where p(i, j)  is the simultaneous probability of a 
phenomenon i  and j . The conditional entropy 
H (X |Y )  is called the loss (residual) entropy.  

Similarly, I j|i =
Def
ln p( j | i) . This quantity is called the 

noise information. Its average information, the 
conditional entropy, is called the noise entropy in 
channel K ,  

H (Y | X) = !
i
"

j
"p(i, j) ln p( j | i).       (2.8) 

The usable information Ii; j  in an output message 
yj  about an input xi  is defined by the equality 

Ii; j =
Def
Ii ! Ii| j = ! ln q(i)+ ln p(i | j) = ln

p(i | j)
q(i)

.  The 

average information amount of Ii; j  in the message j  
about the message i  is the quantity  
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T (X;Y ) =
Def

i
!

j
!Ii; j p(i, j) =

i
!

j
!p(i, j) ln p(i | j)

q(i)
= "H (X |Y )+ H (X),  

    (2.9) 

called the average usable transferred information, 
transinformation [20]. Similarly,  

I j;i = I j ! I j|i = ! ln p( j)+ ln p( j | i) = ln
p( j | i)
p( j)

,  

and then  

T (Y ; X) =
Def

i
!

j
!I j;i p(i, j) =

i
!

j
!p(i, j) ln p( j | i)

p( j)
= "H (Y | X)+ H (Y ). 

  (2.10) 

For a simultaneous distribution 
p(i, j) [= p( j, i)], i, j ! {1, 2, ...}  we define the 

simultaneous entropies  

H (X,Y ) =
Def
!

i
"

j
"q(i)p( j | i) ln[q(i)p( j | i)]

= H (X)+ H (Y | X),
   (2.11) 

H (Y , X) =
Def
!

i
"

j
"p( j)p(i | j) ln[p( j)p(i | j)]

= H (Y )+ H (X |Y )
 

and then H (Y , X) = H (X,Y ) .  

A continuous transfer channel K  is defined in a 
similar formal way as a discrete one, but the quantities 
X, Y , (X |Y ) , (Y | X)  are continuous. Adequate 
differential entropies are defined [20].  

It follows from equalities (2.9)-(2.11) that, both in a 
discrete and in a continuous transfer channel, the law 
of entropy (information) conservation, the channel 
equation is valid,  

H (X)+ H (Y | X) = H (Y )+ H (X |Y ),  H (X)! H (X |Y )
= H (Y )! H (Y | X).  

(2.12) 

Or, also, the symmetry of transinformation, 
T (X;Y ) = T (Y ; X) , is valid.  

 
Figure 2: The information transfer channel: without losses, 
without noise, disrupted, without noise and losses. 

2.2. Thermodynamic Entropy 

2.2.1. Definition of Equilibrium Macroscopic 
Thermodynamics 

With an arbitrary thermodynamic system A , in the 
thermodynamic equilibrium, the macroscopic (global, 
extensive) and thus the additive quantity, called the 
thermodynamic (Clausius) entropy, denoted as S , is 
associated. But, the phenomenologic (macroscopic, 
classic) thermodynamics defines its change !S  only, 
generated by a reversible exchange of heat !q  at an 
absolute constant temperature (in  

! K) between the 
system A  and its environment. Or, it should be defined 
by another change of heat energy !q , expressible by 
an equivalent substitute reversible way3 at a certain 
constant temperature ! > 0  [24]. This change is 
defined by the Clausius equation  

                                            

3or, by a possibility of such a type of changes 

 
Figure 1: The relations among entropies of an information 
tranfer channel. 
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!S =
Def !q

"
,  " > 0.      (2.13) 

By integration of dS =
!

!S , when !q=
"

"Q , the 
entropy S  can be figured, but, with such an exception 
of an additive integration constant S0 . For the entropy 
S , as a function of a temperature ! > 0 , it is to be 
valid that  

S = S(!) = " #q
!
=$ (!)+ S0 ,     (2.14) 

where !"1  is Pfaffian integrating factor [5, 21].  

The quantity S0  is a non-zero constant, 
independent from state variables of system A , but 
dependent on matter units ( mol, kmol ) of A . Then, 

S0 =
!

S0 (n) , where n  is a number of matter units of A . 
Not respecting this fact leads to the known Gibbs 
paradox [17, 19, 23]. A certain mathematical solution of 
this phenomenon will now be revised shortly. 

2.2.2. Gibbs Paradox 

Just by the (thought) "dividing" of an equilibrium 
system A  by diaphragmas [23], without any influence 
on its thermodynamic (macroscopic) properties, a non-
zero difference of its entropy, before and after its 
"dividing", is evidenced.  

Let us consider a thermodynamic system A  in 
volume V  and with n  matter units of ideal gas in the 
thermodynamic equilibrium. The state equation of A  is 
pV = nR!.  For an elementary change of the internal 

energy U  of A  we have dU = ncvd!.   

From the state equation of A  and from the general 
law of energy conservation [for a (substitute) reversible 
exchange of heat !q  between the system and its 
environment] we formulate the 
I . Principle of  Thermodynamics , !q = dU + pdV .  

From this principle, and, from the Clausius equation 
(12), it follows that  

S = n ! cv
d"
"

+ R dV
V

#

$
%

&

'
( = n cv ln"+ R lnV( ) + S0 (n)

=) (",V )+ S0 (n). 
  (2.15) 

Let us "divide" the equilibrial system A  in a volume 
V  and at a temperature ! , or, better said, the whole 
volume V  (or, its whole given state space) occupiable, 
and now just occupied by all its constituents (particles, 
matter units), with diaphragmas (thin infinitely, or, 
"thought" only), not affecting the thermodynamic 
properties of A  supposingly, to m  parts Ai , 

i ! {1, ..., m} , m !1  with volumes Vi  with matter units 

ni . Evidently, n = ni
i=1

m

!  and V = Vi
i=1

m

! .  

Now let S0 (n) = 0  and S0i (ni ) = 0  for all i . For the 
entropies Si  of Ai  considered individually, and for the 
change !S , when volumes V , Vi  are expressed from 
the state equations, and for p = pi , ! =!i  it will be 
gained that ! [i ] = Rn[i ] ln n[i ] . Then, for 

Si =! i = ni cv ln"+ R lnVi( )  is to be valid, we have  

i=1

m

!Si =
i=1

m

!" i = ncv ln#+ R ln
i=1

m

$Vi
ni

%

&
'

(

)
*,    (2.16) 

!S = S "
i=1

m

#Si =$ "
i=1

m

#$ i = !$ = R ln
V n

i=1

m

%Vi
ni

= "nR
i=1

m

# ni
n
ln ni
n
> 0.

 

Let us denote the last sum as B  further, B < 0 .  

The result (2.16), !S = "nRB , is a paradox, a 
contradiction with our presumption of not influencing a 
thermodynamic state of A  by diaphragmas, and, leads 
to that result, that the heat entropy S  (of a system in 
equilibrium) is not an extensive quantity. But, by the 
definition of the differential dS , this is not true.  

Due to this contradiction4 we must consider non-
zero integrating constants S0 (n) , S0i (ni ) , in such a 

way, that !S = (" + S0 )# (" i + S0i ) = 0
i=1

m

$ . This equation 

is solvable for the system A  and all its parts Ai  by 

solutions S0[i ] (n[i ] ) = !n[i ]R ln
n[i ]
"[i ]
.   

Then  S[i ] =
!

SClaus,[i ] ,  and we write and derive that  

SClaus =
i=1

m

!SClaus,i =
i=1

m

!niR ln" i = nR ln" 

 #  " = " i ;  $S = 0.
   (2.17) 

 
                                            

4Quantity !B  expressed in (2.16) is information entropy of a source of 

messages with an alphabet n1 , n2 , ... , nm[ ]  and probability distribution ni
n

!

"
#

$

%
&
i=1

m

.  

Such a division of system to m  parts defines an information source with 
information entropy of maximum lnm . 
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2.2.3. Definition of Statistical Thermodynamics 

The term (macro)state of a system A , both 
equilibrium and non-equilibrium, means a class of 
equivalence5 on the set of all its possible microstates - 
microscopic arrangements of all its constituents 
(particles, matter units) within all (by us distinguished, 
defined) parts, cells, of its whole, by them occupiable, 
volume V , or, better said, of a given (state) space of 
A 6.  

Let us denote the cardinality of such a class as 
thermodynamic probability  !P  of a given macrostate.  

Let m  be a number of cells of the whole volume, 
(state) space, of A , occupiable by a set of all its 
constituents, let M  be a number of all its constituents, 
and, let ml , 0 ! ml ! M , be a number of constituents in 
a cell l  of a given (state) space, 1! l ! m . Then, 

 

!P = M!

ml!
l=1

m

!
,  ml = M

l=1

m

" .  

Then the Boltzman definition [15] of the physical 
(thermodynamic) entropy S  of A  (of, the whole volume 
V , or, of a given state space) in a macrostate with 
thermodynamic probability  !P  [could be non-equilibrium 
too, composed by (equilibrium) subsystems Ai  in 
states ! i , i ! {1, 2, ...,m} , not interacting mutually (at 
the same temperature ! , or also, at various 
tempertures !i ) with thermodynamic probabilities  

!Pi ] 
is valid;  

 
SBoltz =

Def
k ! ln !P,  SBoltz =

i=1

m

"SBoltz,i = k !
i=1

m

" ln !Pi ,  !P =
i=1

m

# !Pi .  (2.18) 

Let us denote by N  and N j  numbers of particles of 
system A  and of its subsystems Aj , j = 1, ... ,m ! N , 

N j = njNA , N j = N = nNA
j
! .  

By Stirling’s formula and (2.18) we have, that 

SBoltz = !kN
N j

Nj
" ln

N j

N
=
#

! kNB .  

The last sum B  defines Boltzman function BBoltz  of 

statistical physics, BBolts =
!

B.   

                                            

5Due to individal particles being undistinguishable mutually by means of 
macroscopic thermodynamics, microstates of a given macrostate are 
undidisguishable too 
6State space of A  can be three-dimensional or general configuration space, 
impulse or the whole phase space 

Evidently,  ln
!P = !NBBoltz .  

For Boltzman entropy per one particle we write 
SBoltz
N

= !kBBoltz .  

The equilibrium system A  (with N  particles) is 
possible to be identified with the (state) space it 
occupies, being defined by "one-particle" railing of cells 
["one-particle" (state) space], with the uniform 
probability distribution of occupation these cells by 

particles, 
N j

N
!

"
#

$

%
&
j

= 1
N
!

"#
$

%& j
, where  j = 1, ..., m  and m = N . 

In this space the quantities B * ,  !P * , S *  are defined,  

 
B * =

!

j=1

N

" 1
N

ln 1
N

= lnN = #1
N

ln !P*,  S* = #kNB *.   (2.19) 

3. CLAUSIUS, BOLTZMAN AND SHANNON 
ENTROPY 

Let us explore the entropy SBoltz  during the Gay-
Lussac experiment.  

The value SBoltz  is dependent on a time 
development of A  within the whole volume V  divided 
into cells, and, in this level of detail S* = max

{m, p(!)} {SBoltz }.  

In the final state of A  (equilibrium) we have: ! = const. , 

n = N
NA

 and ni =
Ni

NA

, where  i = 1, 2, ..., m  is given by a 

railing of our diaphragmas.  

Probability distribution Ni

N
, i = 1, ..., m  (defined in 

such railing) states a probability of an observer’s choice 
of i -th cell with Ni  particles.  

The uncertainity !B  of this choice is given by 
Shannon entropy at the value 

!BBoltz = !
Ni

Ni=1

m

" ln Ni

N
=
#

! BGibbs .   

Its maximum !B *  is achieved for the most possible 
detailed description ( m = N ) of the observed 
equilibrium system A  and with the uniform probability 

distribution Ni

N
= 1
N

, i = 1, ..., N .  

Till this moment, the expression !BBoltz  (2.18) 
defines an uncertainity of probability distribution too, 
but, defined by a time propagation of the set of 
particles of A , now not equilibrium, within the all cells 
of the given railing.  
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When A  achieves its final, equilibrium state, each 
"its own" "one-particle" cell is occupied by one particle 
and the thermodynamic entropy of A  (of its entire 
volume, or, of a given state space) per one cell, is 
!kB * .  

But when the observer’s railing is considered, the 
index i = j = 1, ..., m  is used, and, the value 
!BBoltz = !BGibbs " B *  is defined. Till this moment, the 
relation !BBoltz < !BGibbs " !B *  is valid.  

During the time development of A  such probability 
distributions are defined that are impossible for 
observing its equilibrium state (for which our railing 
defines the value !BGibbs ); for the sets of all values of 
!BGibbs  and !BBoltz  we have  

{!BGibbs} " {!BBoltz }, but, max{!BGibbs} = max{!BBoltz }

= !B* = S *
kN

.
 

The quantity !B * , introduced in (2.19), has a 
meaning of the maximal uncertainity of distribution of 
particles, and, also, of their energies within all "one-
particle" cells.  

Thus, using a measure r  of the accuracy, detail of 
our observation, we write  

!BGibbs = !
i=1

m

" Ni

N
ln Ni

N
= ! 1

r j=1

N

" 1
N

ln 1
N

= 1
r

lnN = ! 1
r
B*,  r #1,

     (3.1) 

lnN = !r
i=1

N

" Ni

N
ln Ni

N
= !r # BGibbs = !r # BBoltz = !B*,  

S* = kN lnN = !kNB* = SClaus = !r " kNB = rSGibbs = rSBoltz .  

Following (3.1), for the system A  with "its own" 
"one-particle" railing, j = 1, ..., N , and, for an observer’s 
railing, i = 1, ..., m , it is valid that  

ln! = "s # B,  s=
$ r #Q
%# kN lnN

,  s > 0,  sr = ln!
lnN

= const.  (3.2) 

It is provable that s = r  for all r !1 , and thus, 
! = N > 1 .  

For A  with volume V , in the thermodynamic 
equilibrium at a temperature ! , its heat 
 Q =

V! "q(#,V )  and its entropy 

 SClaus =
V!
"q(#,V )

#
= Q
#

.  

Then, following note 3, we have,  

SClaus = Q
!

= kN ln" = kN lnN = S*,  " = #

ek!
, # =

$ Q
N

= Qi

Ni

. (3.3) 

For the (final) equilibrium state of A  and for our 
most possible detailed observation of A  
[max(i) = m = N  with the uniform probability distribution 
of our choice] r = s =1  is valid. Otherwise s = r > 1 .  

Considering a general observer’s railing, 
i = 1, ...,m ! N , any time development of A  is 
expressed by a sequence of values from the set 

 
{SBoltz} ! {SBoltz}!{SGibbs} , growing, defined by a time 
propagation of its N  particles (bearing heat Q  at 
temperature ! ) through its whole occupiable volume 
(a state space). Any of values of such a sequence 
defines Clausius entropy, relevant to a certain 
equivalent substitute equilibrium state, at value 
SClaus

!r
=
" Q
T"

=
" Q
!r #

,  !r $ r $1 .  

On the set 
 
{SBoltz}!{SGibbs}  the equality 

!BBoltz = !BGibbs  is valid. It expresses the observer’s 
uncertainity only (as !r = r ). It can be changed by a 
various organization of railing, up or down respectively. 
Thus, the best possible knowledge about the 
equilibrium A  should be achieved just when both the 
observer and the system A  are in equilibrium and 
"one-particle" railing is considered. 

Then, !r = r =1 , otherwise, SBoltz
SGibbs

= r
!r
"1 .  

The entropy SClaus  is the maximum of the physical 
entropies SBoltz  and SGibbs  which are bound Shannon 
entropies figurred in physical units only. 

4. ELEMENTS OF HEAT TRANSFORMATION 

4.1. Reversible Carnot Cycle 

A reversible Carnot cycle, here denoted as O , is 
the most simple heat cyclical process ending with a 
gain of mechanical work, denoted as !A . It consists of: 
4 reversible changes; 2 isothermal changes related to 
two constant absolute temperatures, TW  and T0 , 
TW ! T0 > 0 ; and two adiabatic changes effecting the 
transposition between these two temperatures in a 
working medium. The working medium, a 
thermodynamic system denoted as L , is the 
transformer of the input energy, denoted as !QW , and 
as it passes through the cycle it acquires this input heat 
!QW . This occurs during the reversible isothermal 
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expansion phase, during which the temperature TW  of 
the system is equal to that of the heater A . Within the 
reversible isothermal compression phase, while the 
temperature T0  of the system is equal to that of the 
cooler B , the system L  is giving out "residual" heat, 
denoted as !Q0 , to B . To achieve a positive gain in 
!A  it must be valid that TW > T0 .  The difference 
between the values of !QW  and !Q0  is equal to that of 
!A  gained within the cycle;  

!A = !QW + ("!Q0 ) or  !A = !QW +!Q*
0  ,  when  !Q*

0 =
!

" !Q0 .   

The sign +  denotes the heats delivered (directly) to the 
system L  and the sign !  denotes the heats drained 
off (directly) from the system L  during the cycle.  

 
Figure 3: Carnot Cycle. 

The transformation efficiency of a reversible Carnot 
cycle, denoted as !max , is defined by the equation  

!max =
Def "A
"QW

= "QW + (#"Q0 )
"QW

.       (4.1) 

Following from both the definition (4.1) and the 
condition of the cyclical form of the whole 
thermodynamic change O  [15], we have  

!max = "QW # "Q0

"QW

= TW #T0

TW
,  !max < 1.      (4.2) 

Carnot’s theorem (see later) states that !max  is the 
maximum of a set of efficiencies from all those heat 
cycles with those (extreme) working temperatures. 
Following from (4.2) in a reversible Carnot cycle it is 
valid that  

!QW

TW
= !Q0

T0

,  !QW

TW
+ "

!Q0

T0

#

$
%

&

'
( = 0  or   !QW

TW
+
!Q*

0

T0

= 0,  (4.3) 

or more generally that  

 i![W ,0]
" #Qi

Ti
=
#

O!$
%Q (&)
&

= 0.       (4.4) 

The expressions !Qi  and !Q(")  denote all the 
heats shared reversibly (isothermally) when the 
temperature of the system L  is either Ti  or !  

respectively. The ratios !Qi

Ti
 and !Q(")

"
 are known as 

changes of heat (Clausius’) entropy S .  

The integral in (4.4) is named Clausius’ integral and 
this relation itself is the mathematical integral form of 
the II. Principle of Thermodynamics in Thomson-
Planck’s formulation: It is impossible to construct a 
heat cycle transforming all heat delivered to a system 
( L , going through this cycle) into an equivalent amount 
of mechanical work ( !A ).  

Therefore in the case of a reversible Carnot cycle, 
Clausius’ integral, the algebraic sum of all the by-
temperature-reduced heats [both delivered (directly) to 
the cycle and drained off (directly) from the cycle], 
equals 0 . According to Thomson-Planck’s formulation 
there must be both heat !Qi=W  delivered into the cycle 
O  and heat !Qi=0  drained off from the cycle. As a 
consequence of the existence of these heats (the input 
!QW  and the "residual" !Q0 ), and in accordance with 
the I. Principle of Thermodynamics, it must be valid that 
!max < 1.   

Another formulation of the II. Principle of 
Thermodynamics is Carnot’s theorem, the first part of 
which states: The efficiencies of all reversible Carnot 
cycles with the working temperatures TW  and T0  are 
equal.  

A reversible Carnot cycle is an abstract construction 
working without any restriction on the values TW  and 
T0  (except in the case that TW ! T0 ) and any restriction 
on the medium L . Therefore we can consider that it 
runs in both an ideal medium and a non-ideal medium.  

Reversibility of a (thermodynamic) change of status 
in a thermodynamic system means that, in such a 
system, there is no resistance that this change must 
overcome. Thus there is no friction in a system going 
through such a change, and consequently there is no 
(positive) production of heat within it. We can denote 
such heat as !Q0x . This situation, where !Q0x = 0 , 
stands in any ideal medium L  (without viscosity, i.e. in 
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ideal gas), both when a Carnot cycle runs finitely slowly 
and when it runs infinitely slowly. We can call this an 
ideal cycle. 

However, a reversible Carnot cycle can run in a 
non-ideal, real system L  (with viscosity) when the 
kinetic energy of the system is constant and, as a 
consequence, no heat !Q0x > 0  is generated. This 
situation occurs when the change of states in a (real) 
system is quasi-stationary, namely when it is infinitely 
small and runs infinitely slowly, so that it is valid that 
!t"# (where t denotes time).  In this case !Q0x = 0  also 
holds true. 

4.2. Irreversible Carnot Cycle 

When the system L  is non-ideal, for instance it is a 
real gas and the heat cycle operates with a finite, but 
not zero, speed,  

0 < !t < ",         (4.5) 

some inner friction caused by the viscosity of L  
generates noise heat !Q0x . The fact that the medium 
L  is non-ideal is only discovered when the changes 
the system undergoes are not reversible (e.g. they are 
not the cycle O  where !t"#, !Q0x = 0  is valid), 
namely when it undergoes non-quasi-stationary 
changes lasting a finitely long period of time (4.5). Then 
the kinetic energy of L  varies and, due to inner friction 
on the passive resistants in L , (positive) production of 
the heat !Q0x  arises,  

!Q0x > 0.         (4.6) 

The second part of Carnot’s theorem states: The 
efficiency of any irreversible heat cycle with (extreme) 
working temperatures TW  and T0 , TW ! T0 > 0 , is less 
than the efficiency of a reversible Carnot cycle with 
those same working temperatures.  

The substitute thermodynamic path [24] is denoted 
as !O , expressing the irreversible cycle itself. For this 
path to be closed, the heat !Q"0  must be drained off 
from the medium L  when its temperature is T0 . This 
heat is greater than the heat !Q0  when only the 
reversible cycle O  is considered. Thus we have  

!Q"0 = !Q0 +!Q0x .        (4.7) 

Consequently for the output work ! "A  of an 
irreversible Carnot cycle we have  

! "A = !QW + (#!Q"0 ) = !A # !Q0x .      (4.8) 

For an irreversible Carnot cycle with the working 
temperatures TW  and T0 , where TW ! T0 > 0 , it follows 

from the definition of the (transformation) efficiency, 
denoted as ! , that  

! = " #A
"QW

< "A
"QW

= TW $T0
TW

=!max .       (4.9) 

The equality (4.8) and the inequality (4.9) implies 
that  

!Q"0
!QW

> T0
TW
.       (4.10) 

Within the reversible part O  of the irreversible cycle 
!O  the equality (4.3) is valid and thus, following (4.7) 

and (4.10), for the whole irreversible !O  we have  

!QW

!TW
+ "

!Q"0
T0

#

$
%

&

'
( = "

!Q0x

T0
< 0,     (4.11) 

or, more generally (Clausius’ inequality),  

 i![W ,0]
" #Q (Ti )

Ti
=
#

$O!%
&Q(')
'

< 0,   #Q(Ti )=
#

#Qi ,   (4.12) 

where !Qi  and !Q(")  denote all the (elementary) 
heats shared reversibly (isothermally) when the 
temperature of the system L  is respectively either Ti  
or ! . The relations (4.4) and (4.12) are also known as 
Kelvin’s formulation of the II. Principle of 
Thermodynamics.  

In the case of an irreversible Carnot cycle !O , 
Clausius’ integral, the algebraic sum of all the by-
temperature-reduced heats (4.12) [both delivered 
(directly) to the cycle and drained off (directly) from the 
cycle], is less than 0 . This is caused by the heat !Q0x  
being drained off from the medium L  (into B ) when its 
temperature is T0 . This is a consequence of the 
requirement that the thermodynamic path !O  in L  
must be cyclical, and, thus, that the whole process be 
repeatable.  

Thus with respect to the work ! "A  produced within 
one run of an irreversible Carnot cycle !O , this cycle 
can be considered to be a reversible cycle O  
accompanied by the generation of noise heat !Q0x > 0 . 
The "additional" heat !Q0x  existing in an irreversible 
cycle then enters B  during the compression phase, 
with the compression work having a value equivalent to 
the noise heat !Q0x . This compression work 
diminishes the mechanical work !A  acquired during 
the reversible part O  of the !O  cycle. Thus we can 
envisage one "additional" isothermal compression 
running in parallel with the "original" compression. 
Therefore, with regards to the heat !Q"0  being drained 
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off from the medium L , when L  is going through the 
irreversible cycle !O , this cycle can be considered to 
be an additive superposition of the reversible part O  
and the irreversible part; the latter simply being this 
"additional" isothermal compression.  

Irreversibility is the consequence of both the 
medium L  being non-ideal and its state changes being 
of finite and non-zero speed. Therefore the equation 
!QW = !A = ! "A  is the limit, but not achievable in 
reality. 

4.3. Reverse Reversible Carnot Cycle 

This cycle is a reverse Carnot cycle in which the 
states of the system L  are changing along the curve 
O , but, in the opposite way, starting with the 
isothermal expansion at the temperature T0  when the 
diathermal contact between L  and B  is maintained. It 
is a cycle run of the medium L  through a sequence of 
(equilibrium) states along the curve O  oriented in the 
opposite way than it is in the case of a direct Carnot 
cycle. This run is called the cooling run too. The Carnot 
machine with this running through of its medium L  
along the heat cycle O  is working as a heat pump, 
cooling machine. The functionality of such a cooling 
machine is that:  

Within the isothermal expansion at the temperature 
T0  the system L  is draining off the heat !Q0  being 
pumped out, transferred from the cooler B . This heat 
is, within the isothermal compression at the 
temperature TW , delivered from L  into the heater A . 
We call it the output heat !QW ,  

!QW = !Q0 +!A      (4.13) 

The quantity !A  is the input mechanical energy 
(work) delivered into L  within the isothermal 
compression at the temperature TW .  

Following the first part of Carnot’s theorem (the 
efficiencies of all reversible Carnot cycles with the 
working temperatures TW  and T0 , TW ! T0 > 0 , are 
equal) we must conclude that in the opposite case we 
would be able to couple two Carnot machines with 
different efficiencies !1 , !2 , !1 "!2  in such a way that 
the resulting machine would be the perpetuum mobile 
of the II. order (machine changing cyclically, 
permanently the whole input heat !QW  in the output 
work !A ; !QW = !A ). So it must be valid that !1 =!2 . 

The first part of Carnot’s theorem is another variant 
of the Thomson-Planck formulation of the II. Principle 
of Thermodynamics. 

5. HEAT TRANSFORMATION AND INFORMATION 
TRANSFER 

It follows from section 3 and also from Brillouin [2] 
and [20], Landauer [22] and Gershenfeld [4] that when 
an average amount of information (denoted as !J ) is 
being recorded, transmitted or computed, etc. while the 
temperature is ! , there is a need for a (minimal) 
average energy !W , !W " k #$ # !J . In this paper 

!W =
!

!QW .   

We term the following ratios [expressed in 
information units ( Hartley, nat, bit )] changes of the 
thermodynamic entropies of system L  in cycles O  or 
!O :  

!QW

kTW
 input, !A

["]

kTW
 output  (=

!

!I ["] ), !Q0

kTW
 loss, !Q0x

kTW
 noise, (5.1) 

where k  is Boltzman’s constant.  

These changes are the absolute values of H (!) , 
H (! | !)  contained in any message on inputs and 
outputs of a "carnot" (thermodynamically) described 
transfer channel K . 

5.1. Reversible Carnot Cycle and Noiseless 
Channel 

A reversible Carnot cycle O  running in L  
(producing noise heat !Q0x = 0 ) can be considered to 
be a thermodynamic, average-value realization or, as 
such, as a model of an information transfer process 
running in a channel K  without noise. For the average 
noise information (entropy) H (Y | X)  defined in (2.8) it 
is valid that H (Y | X) = 0 .  

 
Figure 4: The schema of a reversible Carnot Cycle. 
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On the channel K  the average information 
amounts H (X) , H (Y ) , H (Y | X) , which have been 
expressed in (2.6) and (2.8), and with their values 
satisfying (5.1), are defined as: 

H (X) =
Def !QW

kTW
   = !Q0

kT0

,  following (4.3)
"

#
$

%

&
',      (5.2) 

H (Y ) =
Def !A
kTW

=  !QW " !Q0

kTW
= !QW

kTW
#$max = H (X) #$max =

!

!I ,  

H (Y | X) =
Def
0.  

 
Figure 5: The information transfer channel modelling a 
reversible Carnot Cycle. 

Thus we assume the medium L  going through a 
reversible Carnot cycle O  works as a thermodynamic, 
average-value model of an information channel K  
( K ! L ) and that the equation (2.12) is valid for the 
values of the quantities in (5.2).  

Following from (4.3), the definition (5.2) and the 
assumption (11) we then have  

!QW

kTW
"#max $ 0 = !QW

kTW
$ H (X |Y )  and thus      (5.3) 

H (X |Y ) = !QW

kTW
" (1#$max ) = !QW

kTW
" % = !Q0

kTW
,  % = T0

TW
.  

Thus for the transinformation defined in (2.9), (2.10) 
and using the definitions (5.2), we have  

T (X;Y ) = H (X) ! (1" #) = H (X) !$max ,  then     (5.4) 

T (Y ; X) = !QW

kTW
"#max = !A

kTW
  and thus  T (X;Y ) = !I = T (Y ; X).  

As a consequence of Thomson-Planck’s formulation 
of the II. Principle of Thermodynamics the result (5.3) 
and the relations (5.4) imply the sharp inequality in the 
relation  

!I = T (X;Y ) < H (X).        (5.5) 

The equality in the relation (5.5) is valid for all 
reversible Carnot cycles (with temperatures TW  and 
T0 ) viewed informationally, and can be considered to 
be an information formulation of the first part of the 
Carnot’s theorem.  

When the medium L  has gone through the cycle O  
once [and in agreement with (4.4)], we have the 
following for the change !SL  of the heat entropy SC  of 
the whole reversible Carnot engine:  

 
!SL = O!"

#Q
T
= !QW

kTW
$
!Q0

kT0
= 0.       (5.6) 

As a consequence of the additivity of (substitute 
reversible [24]) changes of heat entropy, when the 
medium L  has gone through the reversible cycle O  
once, we have the following for the change !SAB  of the 
heat entropy SC  in the system ( AB ) (consisting of the 
heater A  and the cooler B ):  

!SAB = "
!Q0

kTW
+
!Q0

kT0
= !Q0

kT0
#$max =

!QW

kTW
#$max .     (5.7) 

A reversible Carnot engine is an isolated system, in 
which the transformation of heat energy  !QW ! x  to 
mechanical energy  !A ! y  is being performed. As a 
consequence of the additivity of (substitute reversible) 
changes of heat entropy, and when (5.6) and (5.7) are 
used, we have the following for the result change !SC  
of the heat entropy SC  of the whole reversible Carnot 
engine:  

!SC = !SL +!SAB =
!QW

kTW
"#max .       (5.8) 

The derivation (5.4) and the equation (5.8) together 
then imply that  

!SC "T (X;Y ) = H (X) # ($max "$max ),  then      (5.9) 

!SC " !I = 0  or also  !(SC " I ) = 0.  

Therefore the result change !SC  (5.8) of the heat 
entropy SC  of the whole reversible Carnot engine, 
together with the output information !I  defined in 
(5.2), satisfies Brillouin’s [2, 20] extended formulation 
of the II. Principle of Thermodynamics7 

!(SC " I ) # 0  or also  d(SC " I ) # 0.    (5.10) 

                                            

7The information member I  does not exist in the traditional (differential) 
formulation of this theorem, dS ! 0 .  
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We assume the relation (5.9), incorporating the 
equality in (5.10), is valid for any information transfer, 
such as a watching process (i.e. transmitting, 
measuring, recording, computing, etc.), using energy 
transformations8 expressible in a reversible 
thermodynamic way, such as a cycle O  running in L .  

This process can transfer a message  x ! !QW  from 
a source of messages with the information entropy 

H (X) = !QW

kTW
. It is transmitting a message with the 

same average amount of information H (X) . It also 
could be measuring the status ( x ) of the 
thermodynamic system A  or (AB)  observed through 
the process O.  With an information transfer process of 
this type we obtain an output message  y ! !A  with the 
average amount of information !I = H (Y ) < H (X) . This 
information gain is expressed by the by-temperature-
reduced output work !A  performed, while the system 
L  underwent the cycle O  once, at the temperature 
TW . This expresses the definition (5.2) and the 
equation (2.12).  

Consequently on receiving the output information 

!I = !A
kTW

 in O , the distinguishability of the structure of 

the mechanical output of this cycle increases in 
volume, and is realized by the addition !A  to the 
potential output energy; the distinguishability being 
measured by !I . But at the same time the 
thermodynamic distinguishability of the parts A  and B  
of the system (AB) , the structure of which we express 
by the mutually different volumes of heats in A  and B , 
has decreased in volume by exactly the value !SC  
(5.8). Thus we have !SC = !I , stated in (5.9), and in 
(5.10) with the equals sign.  

The increasing !I  of the structural distinguishability 
of the mechanical output models the receiver’s average 
information increase by exactly the average information 
addition !I  contained in any message y  on the output 
of  K(! L) .  

The value !SC  in O  thus represents the increase in 
the whole extensity (see remark 3) of energy used for 
coding the input message, and thus the 
indistinguishability of this energy within the whole 
isolated transfer chain. In agreement with (5.9) and 

                                            

8Generally we could consider any type of so-called directly-shared-energy 
other than heat (e.g. electricity), and instead of the term heat entropy we could 
then speak about extensity and Extensity Grow Principle of the energy 
considered [6]. Naturally thermodynamic irreversibility would again reveal itself 
by the generation and dissipation of noise heat, i.e. on the electrical resistants 
in the case of electric energy 

(5.10) we can say that any such measuring influences 
what is measured.  

In the following section we will show that the 
measured subject [in our heat example A  or ( AB )] is 
not only influenced by the way measuring is organized 
(here described by the cycle O  with !Q0x = 0 ), but 
also that the result [ y  or H (Y ) ] of measuring is 
influenced by its construction in a real environment 
(further described by the irreversible cycle !O  with 
!Q0x > 0 ).  

5.2. Irreversible Carnot Cycle and Noise Channel 

We will now consider an irreversible Carnot cycle 
!O  running in the medium L  [its irreversibility caused 

by a non-ideal working medium L  undergoing such a 
cycle with a finite, but not zero, speed (4.5) and (4.6)], 
to be a thermodynamic, average-value realization or, 
as such, as a model of an information transfer process 
running in a channel K  with noise. For the noise 
information entropy H (Y | X)  defined in (2.8) it is valid 
that H (Y | X) ! 0 . Thus we can assume that the 
medium L  going through an irreversible cycle works as 
an average-value, thermodynamic realization, model, 
of an information channel K  ( K ! L ).  

 
Figure 6: The schema of an irreversible Carnot Cycle. 

On the channel K  the average information 
amounts H (X) , H (Y ) , H (X |Y ) , which have been 
expressed in (2.6) and (2.7), and H (X) , H (X |Y )  with 
their values satisfying (5.1), (5.2) and (5.3), are defined 
as:  

H (X) =
Def !QW

kTW
,       (5.11) 

H (Y ) =
Def ! "A
kTW

= H (X) #$max %
!Q0x

kTW
= !QW

kTW
#$ = H (X) #$=

!

! "I  

and following the result (4), for the reversible case we define  

H (X |Y ) =
Def !Q0

kTW
,  
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because, in respect to the mechanical work ! "A  gained 
when L  has gone through the cycle once, an 
irreversible Carnot cycle !O  can be considered to be 
an additive superposition of its reversible part O  [(4.3) 
is valid], and its irreversible part (with noise given by 
the production of the heat !Q0x > 0  in the medium L ). 
The noise heat is drained off into B  within the "added" 
isothermal compression, (4.11) and (4.12).  

We can assume that for the values of the quantities 
H (X) , H (Y ) , H (X |Y ) , H (Y | X) , defined in (5.11), the 
equation (2.12) is valid and thus, similarly as in the 
previous subsection, we have  

!QW " !Q0 " !Q0x

kTW
" H (Y | X) = !QW

kTW
"
!Q0

kTW
  and consequently  

H (Y | X) = ! "Q0x

kTW
= ! "Q0x

kT0

# $ < 0,  $ = T0

TW
, TW % T0 > 0. (5.12) 

 
Figure 7: The information transfer channel modelling an 
irreversible Carnot Cycle. 

In agreement with the definitions (5.11), the 
relations (5.12) for the average noise information 
H (Y | X)  in the channel  K(! L)  are in accordance with 
the fact that noise heat !Q0x > 0  is inevitably drained 
off from the medium L  (the sign ! ) at the temperature 
T0 . This reduces the mechanical work !A  generated 
in the reversible part O  of the cycle !O  from the heat 
!QW  when the temperature of L  is at TW . This fact is 
expressed by the denominator of the first ratio in (5.12). 
The heat !Q0x  represents the above-mentioned 
construction influence on the definition (expressed 
thermodynamically by O ) of the measuring process 
itself.  

It is obvious from (5.12), as well as from the 
equation (2.12), that the relations (5.11) describe a 
transfer channel K  with negative values of noise 
added, and thus with the subtractive noise 
H (Y | X) < 0 , which is caused by the draining off of the 
heat !Q0x  ( !"Q0x < 0 ) from the medium L . With 
regards to the information loss H (X |Y )  from the 

transferred information H (X)  in any input message 

 x ! !QW  within the reversible part (O ) of the 
irreversible ( !O ), the heat !Q0x  is that noise which 
causes another (average) information loss H (Y | X)  
[the sign !  in (5.12)] in O" .  

For the transinformation value defined in (2.9), 
(2.10) and following the definitions (5.11) and (5.12), 
we have  

T (X;Y ) = !QW

kTW
"
!Q0

kTW
= !QW

kTW
#$max

= H (X) #$max   but also  
   (5.13) 

T (Y ; X) = !QW " !Q0 " !Q0x

kTW
" "

!Q0x

kTW

#

$
%

&

'
( = H (X) )*max .  

The left sides of the equations in (5.13) are equal, 
and the transinformation satisfies the requirement of 
symmetry (2.12). Also it is obvious that the relations 
(5.13) are the same as those stated in (5.4) for a 
noisless transfer.  

The definitions (5.11), and the relations (5.13), 
together imply the following relations  

! "I = T (X;Y )  when  !Q0x = 0,  then  ! "I = !I ,   (5.14) 

! "I < T (X;Y )  when  !Q0x > 0,  then  ! "I < !I .  

Satisfying its definition, and with the given meaning 
of the quantities H (!) , H (! | !) , the transinformation 
T (X;Y )  is the maximal (average) amount of output 
information that can be gained within either a reversible 
or irreversible Carnot cycle. In accordance with the 
second part of Carnot’s theorem this is also true for any 
other heat cycle in the medium L  with the extreme 
working temperatures TW  and T0 , TW ! T0 > 0 . [These 
cycles are considered to be models of a transfer 
process with a given H (X)  in a channel  K(! L) .] The 
sharp inequality for the ! "I  in (5.14) is a consequence 
of the second part of Carnot’s theorem. Thus, following 
from (5.11) and assuming that (2.12) is valid, the 
inequalities  

! "I # T (X;Y ) < H (X)      (5.15) 

can be considered to be the information formulation of 
Kelvin’s and Thomson-Planck’s theorem and thus 
Carnot’s theorem [the second part and also the first 
part; compare with (5.5) and (5.14)]. Therefore they are 
the information formulation of the II. Principle of 
Thermodynamics.  

Because the value !max  is the maximum of a set of 

efficiencies ! , it is obvious that T (X;Y )=
!

Tmax (X;Y ) . 
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And, because it satisfies the definition of information 
capacity as the maximum (supremum) of a set of 
transinformations, the transinformation T (X;Y ) , stated 
in (5.13) and (5.4), is the capacity CTW ,T0

 for the given 

extreme temperatures TW  and T0 . Consequently on 
the set of all heat engines with these extreme 
temperatures we define  

CTW ,T0
=

Def
T (X;Y ),  T (X;Y ) = !QW

kTW
"
TW #T0

TW
.   (5.16) 

When the states of the medium L  have gone 
through the irreversible cycle !O  once, and in 
agreement with (4.12), we have the following for the 
change !SL  of the heat entropy SC  of the whole 
irreversible Carnot engine:  

 
!SL = O"!"

#Q
T
= !QW

kTW
$
!Q0 +!Q0x

kT0
= $ !Q0x

kT0
< 0   (5.17) 

and following from (5.12), we can write this informationally  

!SL = H (Y | X) " #$1,  # = T0

TW
,  TW % T0 .  

When the medium L  has gone through the 
irreversible cycle !O  once, and due to the fact that heat 
entropy is additive (considering substitute changes [24] 
are reversible), we have the following for the change 
!SAB  of the heat entropy SC  in the system (AB) :  

!SAB = "
!Q0

kTW
+
!Q0

kT0
+
!Q0x

kT0
= !QW

kTW
#$max +

!Q0x

kT0
  (5.18) 

and, following from (5.12) and (5.13), written informationally  

!SAB = T (X;Y )" H (Y | X) # $"1 = T (X;Y )" !SL ,  

$ = T0

TW
,  TW % T0 .

 

The whole irreversible Carnot engine is an isolated 
system, in which the transformation of heat energy 

 !QW ! x  to mechanical energy  ! "A ! y  is performed. 
As a consequence of the additivity of heat entropy 
when substitute changes are considered to be 
reversible, and when (5.17) and (5.18) are used, we 
have the following for the resulting change 
!SC = !SL +!SAB  of the heat entropy SC  of the whole 
irreversible Carnot engine:  

!SC = " !Q0x

kT0

+
!QW

kTW
#$max +

!Q0x

kT0

%

&
'

(

)
* = !QW

kTW
#$max       (5.19) 

and following (5.13) we can write informationally  

!SC = H (X) "#max = T (X;Y ) = CTW ,T0
.  

The relation (5.19) for the result change !SC  of the 
heat entropy SC  of the whole irreversible Carnot engine 
is the same as in the case of a noiseless transfer within 
a reversible Carnot engine (5.8). Following from (5.14) 
and (5.19) we can thus immediately derive  

!SC " ! #I > 0  or also  !(SC " #I ) > 0,    (5.20) 

[see (5.9)]. 

The inequality (5.20) reveals that the result change 
!SC  of the heat entropy SC  of the whole irreversible 
Carnot engine stated in (5.19), together with the output 
average information ! "I  defined in (5.11), satisfies 
Brillouin’s [2] extended formulation of the II. Principle of 
Thermodynamics,  

d(SC ! I") " 0  or, stated informationally,  
d[T (X;Y )! H (Y )] " 0.

   (5.21) 

It is obvious from both (5.11) and (5.19) that for the 
difference in (5.20) we have  

!SC " ! #I = H (X) $%max " H (X) $%max "
!Q0x

kTW

&

'
(

)

*
+ =

!Q0x

kTW
> 0 (5.22) 

and, using the result (5.17), we can write informationally,  

!SC " ! #I =| H (Y | X) | $% =| !SL | $%,  % = T0

TW
,  TW & T0 > 0.  

Thus the result change !SC  of the heat entropy SC  
of the whole irreversible Carnot engine is greater than 
the output information ! "I  transferred through it. In this 
case the result of the information transfer is worse than 
the noiseless case by the difference (5.22). Following 
from (5.9) and (5.19) we can see that 
!SC = !I = T (X;Y ) .  

When we use the definitions (5.2) and (5.11) 
directly, and express !  from (4.9) using (4.7) and (4.8), 
it becomes obvious that we can state  

!I " ! #I = H (X) $ %max " %max "
!Q0x

!QW

&

'
(

)

*
+

,

-
.

/

0
1

= !QW

kTW
$
!Q0x

!QW

= !Q0x

kTW
> 0.

   (5.23) 

The equality of the left sides in (5.22) and (5.23) is 
obvious. Following from the definition (5.11), and with 
0 !" < "max < 1 , we can state  
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! "I = !QW

kTW
#$max %

!Q0x

kTW
= !QW

kTW
#$max %

!Q0x

kT0
# &   (5.24) 

and following (5.17) we can write informationally  

! "I = H (X) #$max +!SL # % = CTW ,T0
+!SL # % =  

= T (X;Y )! | "SL | #$ = T (X;Y )+"SL # $,  $ = T0

TW
,  TW % T0 > 0.  

The quantity | !SL |  we term production of heat 
entropy in the medium L  (within the irreversible cycle 
!O ). From the relations (5.24) it is clear that the change 

in the structure of the mechanical output (created by 
the positive addition of ! "A  to the output potential 
energy ) is expressed by the value of ! "I . This is less 
than !I  at the value | !SL | "#  in the reversible case.  

Therefore noise output exists, draining off the 
transferred information from the maximum:  

!I = T (X;Y ) = H (X) "#max   to the value  

! "I = H (X) #$ < T (X;Y ),  Carno "t s theorem (the second part ).  

In our case of carnotized information transfers 
running in what we can term Carnot’s transfer system 
(i.e. Carnot’s engine as a thermodynamic, average-
value realization, or model, of a shannon transfer 
chain), we have  

! "I < T (X;Y ),  when  # < #max ,  ! "I = H (X) $#,   (5.25) 

! "I = !I = T (X;Y ),  when  # =#max ,  ! "I = H (X) $#max .  

In both reversible and irreversible cases we can 
state  

T (X;Y ) = H (X) !"max ,  Carno #t s theorem (the first part ). (5.26) 

Because the I. and the II. Principle of 
Thermodynamics hold, it is obvious that the thorough 
transfer of any input message  x ! !QW  with the 
(average) information value H (X) , expressed by  

T (X;Y ) = H (X),       (5.27) 

is only the limit (!max "1 ), but not achievable in reality.  

As in the reversible case, our heat transfer process 
completes with the addition of !SC  to the whole 
thermodynamic entropy SC , and for the average 
information ! "I  gained from H (X) , we have  

!SC " ! #I = H (X) $% " 0  where  !SC = !I = H (X) $%max .(5.28) 

The equality ! "I = !I  is valid only in a reversible 
transfer system in which no heat dissipation, generated 
from its non-ideal properties, exists, i.e. where 
!Q0x = 0 .  

Our thermodynamic-information derivation based on 
a heat cycle demonstrates the fact that it is impossible, 
in the type of channel considered, for the bound [2, 20] 
information contained in an input message to be 
transferred without its (average) loss. Such information 
transfer can be worsened only by heat dissipation of 
energy, which means by noise heat ( !Q0x > 0 ) 
generated by the irreversible processes in the channel 
[described by a transformer L  of input heat, which has 
non-ideal properties (inner friction)]. Simultaneously the 
whole thermodynamic entropy of the extended isolated 
system in which this process is running increases, and 
maximum average value of the output transferred 
information diminishes.  

Summarizing Note  

Even in the case of a noiseless but repeatable 
transfer of an input message within our "heat" type 
channel it is impossible to transfer this message 
without the average loss of the information it contains. 
This loss is the consequence of both the I. and II. 
Principle of Thermodynamics which determine energy 
transformation in an isolated system. The resulting 
entropy increase !SC  within this process is caused by 
the requirement that the transfer be repeatable, or 
cyclical. Consequently the reduction, denoted as 
H (X |Y ) , of the input average amount of information 
H (X) , is inseparable from such a repeatable process, 
being its necessary condition;  

repeatibility of  our information transfer 
=> (average) loss of  information.

 

This is the condition for a cyclical transfer O  
[transforming input energy (coding x ) to output energy 
(coding y )] to function, physically as expressed by 
(4.4) and informationally as expressed by the inequality 
in (5.5),  

T (X;Y ) < H (X).  

This relation is the necessary condition (expressed 
informationally) for our channel K  to function 
repeatedly. Therefore our conclusion  

H (Y ) < H (X)  

information form of Thomson-Planck’s formulation of 
the II. Principle of Thermodynamics, and our 
conclusion  

T (X;Y ) = H (Y )  
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is the information variant of the first part of Carnot’s 
theorem.  

Assuming that H (Y | X) < 0  [information variant of 
Kelvin’s formulation of the II. Principle of 
Thermodynamics for irreversible cyclical transfer !O  
when the respective relation (4.12) is valid], we also 
have the information variant of the second part of 
Carnot’s theorem  

H (Y ) < T (X;Y ).  

Following the last four relations we can derive the 
inequality  

H (Y ) ! T (X;Y ) < H (X),  

which is the complete information formulation of the II. 
Principle of Thermodynamics in our model, introduced 
only in [10] and in this paper. Also it is the necessary 
condition of channel equality (2.12). This equality can 
be considered, as such, as a reasoning of the 
equivalence of various formulations of the II. Principle 
of Thermodynamics. Or, we can see (2.12) as the most 
general formulation of the II. Principle of 
Thermodynamics.  

Consequently and, as the example, our model, in 
which the last formulation is valid, satisfies Shannon’s 
coding theorem [3] for the case the channel capacity 
C < H (X) ; thus transfer errors are the inevitable 
consequence of the fact the transfer exists and thus, it 
is the physical reasoning of the DPE, Data Processing 
Enequality [3], H (Z ) < H (Y ) < H (X) , when a transfer 
( X!Y ! Z ) is considered be "carnotized". 

5.3. Reverse Reversible Carnot Cycle and Channel 

Reverse reversible Carnot cycle works as a heat 
pump described in subsection 4.3. In this cycle, 
comprehended as a thermodynamic, average-value 
realization, or model of the transfer process in a 
channel K ! L , which is transferring an (arbitrary) input 
message x ! X  containing the average information 
amount H (X) , we use these symbols and denotations:  

!Q0    the heat drained off from the cooler B  within the 
isothermal expansion at T0 ,  

!A    the mechanical work delivered to the cycle by the 
compression phase at TW ,  

!QW   the output heat delivered to the heater A  by the 
isothermal phase at TW .  

Further, we define the values of changes of 
information entropies on the channel K ! L  (with an 
information transfer process being realized by this 

cycle) by the changes of its physical entropies, for 
instance, in this way:  

H (X) =
Def !A
kTW

,  input entropy,     (5.29) 

!A " x   input message;  

H (Y ) =
Def !QW

kTW
= !Q0 +!A

kTW
=
!

!I ,  output entropy,  

!QW " y  output message;  

H (Y | X) =
Def !Q0

kTW
> 0,  noise entropy,  

!Q0 ,  noise "message".  

 
Figure 8: The information transfer channel modelling a 
reverse and reversible Carnot Cycle. 

So, we consider a channel with additive noise. It is 
clear that  

H (Y | X) = !Q0

kTW
"
T0

T0

= !Q0

kT0

" # = !QW

kTW
"

# = H (Y ) " #, # = T0

TW

   (5.30) 

can be validated.  

The noise with information entropy H (Y | X)  is the 
integral part of the definition of the transfer information 
process. It is not generated by a positive production of 
the heat !Q0x > 0  in the working medium L .9  

We are supposing further that for changes of 
information at the values H (X) , H (Y | X) , H (Y ) , 
H (X |Y )  defined by (5.29) the relations (2.12) are valid 
and, then,  

                                            

9From the relations for !  and !max  it follows that !Q0 = f (T0 ) , where function 

f (!)  is a not-negative function of the argument T0 , f (T0 ) ! 0 , for which 

lim
T0!0

f (T0 ) = 0  is valid. 
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!A
kTW

" H (X |Y ) = !Q0 +!A
kTW

"
!Q0

kTW
   (5.31) 

and then  

H (X |Y ) =
Def

0.  

So, we have a channel without losses. For 
transinformation T (X;Y ) , T (Y ; X) , with respecting the 
definitinon (5.29) it is valid that  

T (X;Y ) = H (X)! H (X |Y ) = "A
kTW

! 0 = H (X)   (5.32) 

and, also,  

T (Y ; X) = H (Y )! H (Y | X) = "Q0 +"A
kTW

!
"Q0

kTW

= "A
kTW

= H (X).     
  (5.33) 

The left sides of derivations (5.32) and (5.33) are 
then equal and they are valid for information amounts 
defined by (5.29) and for the result of derivation (5.31), 
the equution (2.12) for information conservation (both 
the average, information entropies and the 
"instantneous" ones) in the channel too. (Within one 
run of the system L ! K  through the reverse Carnot 
cycle realizing a transfer process.) 

It is evident that  

H (X)
H (Y )

=

!A
kTW
!QW

kTW

= !A
!A+!Q0

="max     (5.34) 

and, consequently  

H (X) = H (Y ) !"max ,      (5.35) 

where !max  is the efficiency of the relevant direct cycle. 
So it is valid, in accordance with relations (5.30) and 
(5.33), that  

T (X;Y ) = H (Y ) !"max .      (5.36) 

Now, let us notice the changes of thermodynamic 
entropy in an isolated system in which the described 
process is runnuing:  

!SAB =
"!Q0

kT0
+
!Q0

kTW
= "!Q0

T0TW
#
TW "T0

k
=    (5.37) 

= !"Q0

kT0
#$max = !H (Y ) #$max < 0.  

Thermodynamic (Clausius) entropy SAB  of the 
system AB  is then lowering its value - the 
(thermodynamic, heat) distinguishability of the systems 
A  and B  is growing. Of course, it is at a detriment of 
the mechanical work !A  delivered, or, of the entropy at 

the value !A
kTW

. There is a need to gain this energy 

(entropy) and it is possible within such an isolated 
system by an unnatural process of transformation heat 
to mechanical energy. But, this process is "running" at 
a background of a natural process of the heat transfer 
in accordance with the II. Principle of Thermodynamics.  

We are considering such a reversible process, 
which is producing the mechanical work at a value 
!A* " !A  of functioning of both these cycles;  

!A*

kTW
* = H (X* ) "#max

* = H (X* ) " TW
* $T0

*

TW
* = !S

A*B* , 

 TW
* % T0

* > 0,   
  (5.38) 

!A
kTW

= H (Y ) "#max = H (Y ) " TW $T0

TW
= $!SA B ,  TW % T0 > 0.  

For the whole change !S  of the entropy S  of the 
whole isolated system in which both these processes 
are running, following the II. Principle of 
Thermodynamics, it is valid that  

!S = !S
A*B*

+!SA B " 0.      (5.39) 

But, for !SAB " 0 , it must be valid that  

!S
A*B*

"| !SA B | .      (5.40) 

This means that the decrease of entropy of the 
value | !SA B | , the greater addition of !S

A*B*
 is to be 

generated, and, then, the whole entropy is growing at 
the value  

!S = !S
A*B*

" | !SA B |# 0.      (5.41) 

The equality occures when !max
* =!max . In another 

case !max
* > !max  which, e.g. for T0

* = T0 , means that 
!QW

* > !QW  a TW
* > TW .  

The environment of the entropy decrease is being 
exhausted, as for its structure which is conserving 
energy, at a greater degree (or at least at the same 
one) - its undistinguishability, disorder (chaos) is 
growing more (or at the same degree) than this 
decrease, the local growing of the order or 
organisiation, is.  
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In the following parts of this text we will end our 
considerations about the analogy of heat 
transformation and information transfer. We will deal 
with direct processes with concentration of our 
attendance to their reversible type; the irreverse ones 
are expressible easily by those equivalent reverse 
ones. 

However, we will return to the problem of a reverse 
cycle and its information-structural aspects in section 8 
once more. 

6. GIBBS PARADOX AND INFORMATION 
TRANSFER 

We observe an equilibrium system A , 
S* = SClaus = SBoltz = !kNB* = !kN lnN . 

Let, in accordance with the solution of Gibbs 
paradox, the integration constant S0  be the (change of) 
entropy !S , added to the entropy ! , to figure out the 
measured entropy SClaus  of the equilibrium state of the 
system A  (the final state of Gay-Lussac experiment) at 
a temperature ! . We have shown that without such 
correction, the lower entropy !  is evidenced, 
! = SClaus " #S,  #S = S0 .  

Following the previus definitions and results we 
have  

!S = !Q0

"
= #nR ln n

$
,         (6.1) 

ln! = "S
knNA

+ ln n = "S
kN

+ lnN # lnNA ,  ! = N  $  "S
kN

= lnNA .  

By the entropy !S  the "lost" heat !Q0  (at the 
temperature ! ) is defined.  

Thus, our observation can be understood as an 
information transfer T  in an information channel K  
with entropies (2.6)-(2.8), but now bound; we have 
these information entropies per one particle of A :  

input   H (X) =
Def S *
kN

= ln! = "B* = lnN = "rB(r),      (6.2) 

output  H (Y ) =
Def !
kN

= "BGibbs = "BBoltz = "B(r),  

loss  H (X |Y ) =
Def S0

kN
,  

noise H (Y | X) = 0    by (2.12);  

H (X |Y ) = !rB(r)! [!B(r)] = B(r) " (r !1) = (!B*) " r !1
r

, r #1.  

For a number m  of cells of our railing in the volume 
V  with A , m ! N , for a detail r  of this our description 
of the "inner structure" of A  (a thought structure of V  
with A ) and for the number q  of diaphragmas creating 
our railing of cells and constructed in such a way that 

q !< 1, m "1 > , we have r = N !1
q

.  

The maximal detail of our "description", the 
accuracy of our observation of the system A , is 
achieved for r =1 . Then B(r) = B *  and, for the output, 
the input and the loss information entropies, it is valid 
that  

H (Y ) = H (X) = !B*,  H (X |Y ) = 0.  

The minimal accuracy, detail of our description of 
the observed system should be for r =! . In this case 
we should place q = 0  diaphragmas, no railing is laid 
and m =1 . We are not considering the "inner structure" 
of A  in this case. Thus we define an output information 
source Y , bound, for which H (Y ) = !BGibbs = 0 . Then, 
the result of such "observation" is 0 , and the loss 
information entropy is  

H (X |Y ) = S *
kN

= lnN = H (X).  

Our observation of the equilibrium system A , 
including the mathematical correction for the Gibbs 
paradox, is then describable by the Shannon scheme 
(2.12), where  

H (X) = SClaus

kN
,  H (X |Y ) = S0

kN
,  H (Y )

= SClaus

kN
,  H (Y | X) = !S

kN
.

     (6.3) 

However, a real observation process described in 
(6.3), equivalent to that one with r =1 , is impossible 
[10].  

We conclude this section by noting that the 
diminishing of the measured entropy value about !S  
against S *  awaited, evidenced by the Gibbs paradox, 
does not originate in an observed system itself. 
Understood this way, it is a contradiction of a 
gnozeologic character based on not respecting real 
properties of any observation [10]. (The influence of 
our measuring, the properties of our measuring, are not 
included in our epistemology.) 

7. OBSERVATION AND II. THERMODYNAMIC 
PRINCIPLE 

The heat !Q0  is defined by, and defines the loss 
entropy S0 = !S  of our observation. We call it the loss 
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heat. It expresses an energy needed for a realization of 
our observation method. Thus, it is natural to consider 
it be "paid" by the observed system A  and its driving 
off from A  (with temperature ! ) to B  (with 
temperature T0 < ! ). Then,  

!Q0

T0
= "Q " !Q0

T0
+
Q
T0
= "Q " !Q0

T0
#
Q
Q
#
$
$
+
Q
T0
#
$
$
= Q
$
.  (7.1) 

Our observation method, a bound information 
transfer T , states the identical relation between two 
heats Q  and !Q0  at temperatures !  and T0  as a 
reversible (direct) Carnot cycle O  with a transformer 
L , the working temperature T0  of its cooler B  and !  
of its heater A ; it supplies a mechanical energy 
!A =Q " !Q0 . Thus, the relation (1) represents the 
integral formulation of the II. P.T., written generally as  

 O
!"S[#] =

"

O!$ dS =
O!$
%Q(&)
&

= 0,  & ' (0,(),  O ="{#}
O[#] . (7.2) 

The cycle O  is a thermodynamic realization of our 
observation, transfer T !O  [10]. The energy !A  bears 
the whole (average) information ! = S *"S0 = kN #H (Y ) , 
gained from A  while it is observed by T . 

We consider a system of stochastic quantities, a 
transfer channel K ! (X,Y ) , with entropies H (X) , 
H (Y ) , H (X |Y ) , H (Y | X)  from (2.6)-(2.8).  

In the realization O  of T , L ! K , the quantities X , 
Y , X |Y , Y | X  are bound, have a meaning of 
energies being input and being output from the 
transformer L  undergoing O 10. "Bound" equality 
(2.12), proved in information theory [3, 26], written 
generally as  

 T
!H["] =

#

 
T!$ dH =

O!$ dB = 0,  T ="{"}
T["] ,      (7.3) 

is valid for our T !O  or L ! K  respectively, by the 
following assignment [10]:  

H (X) = Q
kN!

= "Q0

kNT0
,H (Y ) = "A

kN!
= H (X) #$max =

"

"I , (7.4) 

H (Y | X) = 0,H (X |Y ) = Q
kN!

" # = $Q0

kN!
,    

H (X)! H (X |Y ) = H (X) "#max  = $I < H (X),  

where ! =
" T0
#
= "Q0

Q
.  

                                            

10Thus, our observing method includes, "in itself", its own repeatibility [10] 

For changes of bound information entropies of 
systems L , A , B  (defined by a realization O  of our 
observation T ), and for the whole isolated system C  
in which our observation is performed, it is valid that 
[10],  

 
!SL =

O!"
#Q
k$

= Q
k$

%
!Q0

kT0

 =
!

 kN & !HL = 0,      (7.5) 

!SAB = " !Q0

k#
+
!Q0

kT0

= !Q0

kT0

$%max =
!

 kN $ !HAB = kN $ !I & 0,  

!SC = !SL +!SAB = Q
k"

#$max =
!

 kN # !HC = kN # !I % 0.  

The last inequality for !SC  states that the extended 
II. P.T. for reversible processes [2, 10] is valid witin the 
system C .11 Written informationally,  

 T!! dH = "(HC # I ) = 0 $ "HC = "I % 0.      (7.6) 

For the detail r !1 , for the entropy growth !HC  and 
for the efficiency !max  of the realized definition of our 
observation method [10] it is, by (2.12), (7.4)-(7.6), 
valid that  

!HC = "r # B(r)" ["B(r) # (r "1)] = !I = "BGibbs ,     (7.7) 

!HC = "B *
r

 = "S *
kNr

 = Q
kNr#

,  and then  

!SC  = Q
r"

# 0 $%max = 1
r

,  & = !Q0

Q
= T0

"
= r '1

r
,  r #1.  

The value !max , set by the accuracy r  of our 
observation, is the coefficient of the entropy growth for 
any natural process of heat transition between hot and 
cool environments. It is the efficiency of a cyclic 
reversible transformation using this transition. The 
value 1!"max  sets the (average) information loss 
connected necessarily with an information transfer 
realized this way.  

The definition !max =
Def Q " #Q0

Q
$< 0,1)  is a 

formulation of the I . P.T .  too. 

But, by derivations (7.4)-(7.7) it is clear that  

                                            

11The same growth of entropy SC  could occur in an irrevirsible case too. Heat 

!Q0x > 0 , from irreversibility of our (realized) observation, measuring, would 

diminish output H (Y )  from !I  to !I " !Q0x

kN#
; !HC = !I $ 0  any way [10]. 
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!max =
"HC

H (X)
,         (7.8) 

H (X) > 0 ! "HC # 0,"SC = kN $ "HC # 0   [II . P.T .].  

Thus, in (7.8) the equivalent definition of !max  is 
given and it provides a formulation of the II. P.T. too. 
By (7.8) the common formulation of the Principle of 
Equivalence of the I. and the II. P.T. is stated.  

Thus, by the derivation of (2.12) and by considering 
its equivalence with the information description of a 
reversible heat cycle [10], the II. P.T. is prooved. 

7.1. Equivalence Principle of Thermodynamics 

Even more, the III. P.T. is deducible from (7.8) in 
that the interval of values of !max  must be, due to 
validity of the I. and the II. P.T., open on its left side !  

 T0 > 0
!  K.  

At the end, let us formulate the theorem, the 
Principle of Equivalence of the I., the II. and the III. 
P.T., the proof of which is provided by this paper.  

Theorem (Equivalence Principle of Thermodynamics).  

Let (X,Y )  be a system of (bound) stochastic 
quantities with information entropies H (X) , H (Y ) , 
H (X |Y ) , H (Y | X)  or, with relevant thermodynamic 
entropies S[!] = (Q[!] ) !"

#1 = kN !H (!) . 

Let H (X |Y ) = !Q0

kN"
,  !Q0 =Q # T0

"
= kN #H (X) #T0  where 

! " T0 > 0  and !"1  is Pfaffian integrating factor for Q[!] , 
N  is a number of particles of A ! X  (the selecting 
space of X = [X, p(!)] ).  

Then, by (2.12) with H (Y | X) = 0  and for 

S *=
!

kN "H (X) , S0 = (S*) !
T0
"

, 

Q ! "Q0

Q
  = #max  $< 0,1),           [I . P.T .]%          (7.9) 

!
(S*)" S0

S *
 = H (X)" H (X |Y )

H (X)
 = #max  $  

! (S*)" S0 = #SC  $ 0  and  

H (X)! H (X |Y ) = "HC  # 0,          [II . P.T .]$  

!  "#T0

"
 = $max  % " & T0 > 0,    [III . P.T .].  

The II. P.T. is derivable logically by properties of a 
(bound) stochastic system (X,Y ) ; the others are 
derivable from this one; they all are equivalent.12 
Q.E.D.   

8. RESULTS AND DISCUSSION 

Let us think now, in a free way about possible 
applications of the rsults of this article in biology.13 We 
can consider a principle loss of information (structure) 
within the process of proliferation of cells by their 
duplication (dividing). Within any dividing of a cell (the 
predecessor) its follower (equivocant) is generated and 
the a distortion of the duplicated (copied) structure 
(information) of the paren cell arises. This loss is 
measurable by the quantity of (average) information 
amount. It is a los of part of message being copied 
(transferred), a loss of information within this process of 
such an information transfer. The whole structure of the 
cell is that message, including "a program" for its 
functionality in a texture.  

The result of this is that the continuously decreasing 
precise of the structure of the followers is generated in 
a sequence of copying, dividing the cells, and, the 
whole biological organism, the collection of textures of 
cells, is aging by "the tooth of time" - by the loss of their 
structure, precision of the construction of the follower 
cells (for this, by the loss of both their inner and outer 
bounds). The notion of structure of an object (a 
message, a cell) is to be understood as follows: The 
object has more structure with the greater amount of 
information it contains, the more complicated it is - the 
greater number of parts bound mutually it contains, 
and, also, the less probability of its construction, of its 
structure is evidenced, or, the less stability as an 
isolated physical system it reveals. At the end, 
following a number of divisions, the incompatibility of 
the resulting structure of the last cell (the incompatibility 
of the information amount being represented by this 
cell) with such a minimal structure (information), which 
maintains its ability of both inner and outer 

                                            

12Our paper is arranged as a sequence of successive steps, definitions and 
derivations (2.4)-(2.12) and interpretations (7.3)-(7.7) especially, stating 
gradually, the relation between combinatorial definition of Shannon 
(information) entropy and Boltzman and Clausius (thermodynamic) entropy, 
and, finally, resulting in (7.8) and (7.9). Although we combined the known facts 
about heat transformations and the Shannon’s concept of an information 
transfer chain, this combination presented has not been used yet, as far as the 
author of the paper is informed.  
A next possible application of the opinion presented could be used for another 
transfer (transmission, transition) structures, e.g. electric circuits or 
computational processes and, also it could be used for stating of limits of 
possible behavior of anticipatory systems of various types, e.g. for dynamic 
systems with their bifurcations viewed as such a kind of information transfer 
process. The achieved results are planned to be used in studying relations of 
Thermodynamics and Logics and Thermodynamics of Computing. 
13The author is emphesizing strongly that the ideas expressed below are free 
hypotheses of a functional analogy type only. 
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communication in such a way that it is recognizible as 
"a certain cell" of the certain cell type - so as it is being 
alive, arises.  

This mechanism can be described in a functional 
way by our direct "carnotized" model of information 
transfer. Within any run of our model Carnot cycle the 
less output (average) information is gained in 
comparison with the input one. If this result information 
is used again less information is generated etc. But, 
contemporarily, any run of the cycle generates the 
positive addition of entropy (thermodynamic) of a wider 
isolated system in which this transformation (transfer) 
runs. In this model it is the less and less 
distinguishability of parts of the whole model heat 
engine - our thermodynamic model of that aging by "a 
tooth of time". So, the sought "gen of aging" could be 
nothing more than a datum about the precision of that 
duplication; in our model it is the efficicency of the 
transformation of the input energy. So it is clear that the 
loss of information transferred this way is a suitable 
functional model for the case of the dividing of cells. As 
for cells, this principle reveals and signalizes itself by 
the phenomenon of the shortenning of telomeras [Wen-
Chi Hsueh, University of California, San Francisco; 
Proceedings of the National Academy of Sciences, 
2007].  

Within the pathological proliferation of cells the 
opposite situation arises. In this case the cells with a 
precise structure (but, by an another type in 
comparison with the normal structure of its own original 
and "normal type" is). But, this growth of structure in a 
certain locality in the whole organism is paid by a 
exhausting the energy from an environment of this 
locality. This environment is then in a lack of energy for 
its normal functionality; this energy is consumped in 
favor of this local growth of structure signalized by that 
phenomenon that the followers of the predecessors 
have the the telomeras lengthened [Wen-Chi Hsueh].  

This situation is describable again by our 
information-thermodynamic model, but by a reverse 
one this time. In this model a local decreasing of 
entropy is evidenced and then, the growth of structure 
of such a locality (within a wider isolated system) 
appears. However, for this decrease of entropy (for this 
growth of structure) the energy is needed, but, 
delivered from the environment of this locality, which 
leads to a growth of entropy of this environment and, 
consequently, to a grow of entropy of the whole 
isolated wider system (organism) - which is the price 
for the greater and greater structure of its (open) part - 
the problematic locality. In the case of cells we can see 
the wasting away of the whole organism. Our reverse 
information-thermodynamic model authorizes us to the 
awaiting of a higher stable (moderate, in average) body 
temperature of a patient and, also, a lower temperature 
of the problematic texture. Also, as for therapy, we are 

authorized to consider energy consumption from the 
organism, the body as a whole, e.g. by its cooling 
(therapy by intensive freezing, swimming in a cold bath; 
especially in an inoperable cases of this disease). This 
could be the way to limit, at least for a short time, the 
positive flow of heat supporting the cell metabolic 
processes in problematic localities .14 15  

So it seems to be right to await the notion that our 
information-thermodynamic opinion is viable, within the 
quantitave-functional-analogy point of view, to define 
the properties and quality of a wide variety of 
phenomena. 
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